
タイプ分析による エンジンオイル基油の劣化解析

エンジンオイルの成分のほとんどは基油であり、全体の劣化メカニズムを把握するためには添加剤 のみではなく、基油の変化を調べることも重要である。今回FDMSの測定結果に対してタイプ分析を 適用することにより、定量的に劣化度合いの評価が可能となったため、その事例を紹介する。

基油のFDMS測定

試料:

エンジンオイルの新品・使用品のヘキサン抽出物に対してFDMS測定を行った。

タイプ分析および劣化解析

タイプ分析: 化合物を官能基や不飽和度でグループごとに 分類し、解析を行う

- 不飽和度の異なる炭化水素の存在比率が数値化可能
- 炭素数の異なる炭化水素の存在比率が解析可能

FDMSの測定結果を用い、炭化水素を不飽和度により分類。

炭化水素	不飽	比率(%)			可能性のある構造*			
グループ	和度	新品	使用品	差	Р	0	Ν	Α
C_nH_{2n+2}	0	16.0	15.0	-1.1	0	×	×	×
C_nH_{2n}	1	33.7	35.2	1.4	×	0	0	×
C_nH_{2n-2}	2	23.6	24.4	0.8	×	0	0	×
C _n H _{2n-4}	3	13.9	13.8	-0.1	×	0	0	×
C _n H _{2n-6}	4	7.5	7.2	-0.3	×	0	0	\circ
C _n H _{2n-8}	5	3.9	3.4	-0.5	×	\circ	0	\circ
C_nH_{2n-10}	6	1.4	1.2	-0.3	×	0	0	\circ

N: Naphthenes, A: Aromatics 0.5%以上減

0.5%以上增

*P: Paraffins, O: Olefins,

▶ 飽和炭化水素は環状構造や二重結合を有する炭素 水素に変化したと推定。

炭化水素グループごとの存在比率を炭素数で プロット。

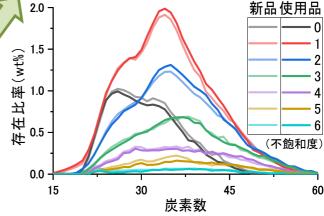


Fig. 3 炭素数の異なる炭化水素の存在比率

- ▶ 基油(ヘキサン抽出物)中の炭化水素について
- ▶ 分子量分布 m/z 200 ~ 800
- ▶ 不飽和度1,2 が比較的多い

不飽和度1 :C30~C46 増加傾向 不飽和度2:C30~C44 ▶ 使用に伴う 組成変化 不飽和度0 :C25~C48 減少傾向

FDMS測定・タイプ分析を基油の劣化解析に適用することにより、定量的な試料間比較を行い、劣化度合いの 評価が可能となった。本分析は、エンンジンオイルに限らず、潤滑油や燃料などの解析にも適用可能である。