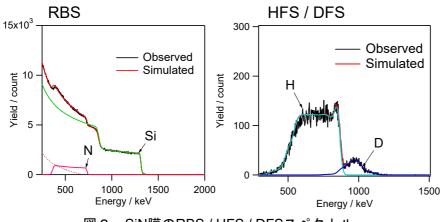
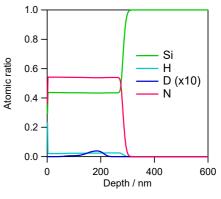

HFS/DFSによる水素、重水素の 深さ方向組成分析

高速イオン照射による反跳を利用して、重水素の深さ方向定量分析が可能となった。 RBS / HFSと同時測定可能であり、水素、重水素を含めた組成が評価できる。 マイクロイオンビームを利用することで、微小部(~100 um×400 um)での評価も可能である。



HFS / DFSの測定原理


RBS / HFSは、水素を含めた確度の高い組成が得られる分析法である。MeVオーダーの Heイオンを試料に照射し、後方散乱He原子、前方散乱H原子を検出する。今回定量方法の 検討を行い、水素に加えて重水素の深さ方向定量分析(= DFS)も可能となった。

HFS / DFS : Hydrogen / Deuterium Forward scattering Spectrometry

重水素含有 SiN膜の深さ方向組成分析

SiN膜のRBS / HFS / DFSスペクトル

デプスプロファイル 図3

atomic%				面密度(×10 ¹⁵ atoms / cm ²)	
Si	Н	D	N	Н	D
43.5	2.4	0.1	54.0	63.2	3.0

表 1 SiN膜の組成、面密度定量結果

- · H、Dの深さ方向分布
- 正確度の高い定量値
- 検出下限

H: 0.2 at.% D: 0.01 at.%

