LIB周辺材料・バッテリーパックの評価

バッテリー周辺材料への樹脂の適用に際し、様々な課題を分析で解決します。

- サーマルマネージメント、クラッシュセーフティー視点で、材料評価を実施。
- 電池材料の熱安定性評価より、周辺部材の最適設計をサポート。

バッテリーパックに求められる性能

求められる性能に関する評価項目				
軽量化	強度·剛性·耐衝撃性 圧縮·衝突·振動			
熱拡散·熱安定性	防炎·遮熱	防水性塩·水噴霧·浸漬		
耐電解液性	絶縁性	電磁波シールド性		

LIB周辺材料に関する材料解析・安全性試験

要求性能に対する評価内容				
材料解析	強度·剛性·衝撃	引張試験、圧縮試験、ヤング率測定、デジタル画像相関法(DIC法) X線CTによるフィラーやCFの配向評価 超音波顕微鏡による樹脂剥がれ、CFの評価		
	熱設計	熱伝導率測定(比熱、密度測定)、輻射率測定、反射率測定、熱抵抗測定 放熱材料(樹脂、フィルム、ゲル)の評価(種類、フィラー量、分散性など) 熱流体シミュレーション		
	防炎・遮熱	燃焼試験、発煙試験 試験後の材料について、組成・物性・不純物分析		
	熱安定性	線膨張率測定、加熱試験後の原材料の組成・物性測定		
	防水性	吸水率測定(浸漬試験)、同位体マーカー法(SIMS)、TPD-MS分析		
	耐電解液性	溶媒クラックや電解液の浸透深さ解析 電解液浸漬試験後の、原材料の組成・分析測定		
	絶縁性	体積固有抵抗(3端子法)と温度の相関、水分率の相関、絶縁破壊電圧試験		
	長期信頼性	耐久試験、劣化試験後の各種材料評価		
安全性試験	機械	釘差し試験、圧壊試験		
	電気	過充電、過放電試験	試験中に発生するガスの成分分析	
	環境	加熱、燃焼、耐火性試験		

電池材料の熱安定性評価

LIB電池材料の材料毎の発熱挙動や 発生ガス挙動を知ることで、短絡時の セル全体の発熱量やガス量を推定可能

これらの情報は、バッテリー周辺部材、 バッテリーケース、バッテリーパックの 最適設計の指標となる

